

A NOTE ON THE STATUS OF *GALBA OCCULTA* JACKIEWICZ, 1959 (GASTROPODA: HYGROPHILA: LYMNAEIDAE)

JOANNA R. PIEŃKOWSKA, ANDRZEJ LESICKI*

Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland (pienkowj@amu.edu.pl, alesicki@amu.edu.pl) *corresponding author (https://orcid.org/0000-0002-1924-1934)

ABSTRACT: The comparison of the gene nucleotide sequences (mitochondrial cytochrome oxidase c subunit I and *ITS2* fragment of the nuclear rDNA) indicated significant differences within the lymnaeid species of the genus *Ladislavella*. For this reason, we postulate retaining of the name *Ladislavella occulta* (Jackiewicz, 1959) for the molecularly separated lineage of the species occurring in Poland.

KEY WORDS: COI, ITS2, Ladislavella, L. occulta, L. terebra, Stagnicola, Lymnaea, taxonomy, classification

INTRODUCTION

JACKIEWICZ (1959) recognised a new species within the complex species Galba palustris (O. F. Müller, 1774) and named it G. occulta. The species was subsequently assigned to Stagnicola Jeffreys, 1830 treated as a subgenus within Lymnaea Lamarck, 1799 (JACKIEWICZ 1993, 1998a, 2000) or as a separate genus (FALKNER 1995, FALKNER et al. 2001, GLÖER 2002, GLÖER & MEIER-BROOK 2003). When taxonomic decisions based on the analysis of nucleotide sequences took on significance, MEIER-BROOK & BARGUES (2002), taking into account the length of ITS2 sequence in rDNA gene, included G. occulta Jackiewicz in a newly established genus Catascopia. They stated after WALTER (1969) that C. occulta was an American species introduced in Europe. Later VINARSKI & GLÖER (2008) found that although JACKIEWICZ (1992, 1998b) was aware of the occurrence of G. occulta in Siberia, she overlooked that the species discovered by her had been described earlier by WESTERLUND (1885) as Limnaea palustris var. terebra. VINARSKI (2012) moreover argued that Ladislavella B. Dybowski, 1913 was the oldest available name for *Catascopia* Meier-Brook et Bargues, 2002. Finally, Galba occulta Jackiewicz, 1959 was assigned as

a junior synonym of *Ladislavella terebra* (Westerlund, 1885) (ANDREYEVA et al. 2010, VINARSKI 2012) and this name was used in subsequent publications (e.g. VINARSKI 2012, PIEŃKOWSKA et al. 2014, 2015a, SCHNIEBS 2016, VINARSKI et al. 2016a, PIECHOCKI & WAWRZYNIAK-WYDROWSKA 2016, SCHNIEBS et al. 2018).

HEBERT et al. (2003a, b) proposed that the nucleotide sequence of the cytochrome oxidase subunit 1 gene (COI) could be a marker that would allow to distinguish species, with suggestion that 3% genetic distance could be treated as a threshold between separate taxa at the species level. Usefulness of Hebert's barcoding in taxonomy was supported by many authors (e.g. TAUTZ et al. 2003, GREGORY 2005, PACKER et al. 2009, GOLDSTEIN & DESALLE 2011) with some suggestion that the threshold should be higher for stylommatophoran gastropods (DAVISON et al. 2009, SAUER & HAUSDORF 2012). However SCHNIEBS et al. (2016) decided that COI sequences could not be used in stagnicoline lymnaeid taxonomy and excluded this gene from their molecular studies (e.g. SCHNIEBS et al. 2015, 2017, 2018, VINARSKI et al. 2017). On the other hand AKSENOVA et al. (2018) presented a deep

Ministry of Science and Higher Education Republic of Poland Folia Malacologica is funded by the Ministry of Science and Higher Education, Republic of Poland, under agreement no 534/P-DUN/2018 of April 4th, 2018 allocated to the activities for disseminating science: Task 1: Preparation of English versions of publications (sum funded by DUN 12,000 PLN) and Task 2: Digitalisation of publications and scientific monographs to enable their open access in the Internet (sum funded by DUN 11,070 PLN).

revision of lymnaeid classification with a huge base of *COI* sequences for species identifications.

In this paper we compare *COI* and *ITS2* sequences of *L*. *terebra* specimens from its Siberian and West

MATERIAL AND METHODS

One hundred and sixty six *COI* and 31 *ITS2* sequences were selected from GenBank resources (Appendix 1). They represented the following lymnaeid species: *Ladislavella occulta* (Jackiewicz, 1959), *L. terebra* (Westerlund, 1985), *L. exilis* (Lea, 1834), *L. elodes* (Say, 1821), *L. tumrokensis* (Kruglov et Starobogatov, 1985), *Stagnicola palustris* (O. F. Müller, 1774), *S. corvus* (Gmelin, 1791) and *Lymnaea stagnalis* (Linnaeus, 1758) originating from 61 localities (Appendix 1).

Sequences were prepared using the programme BIOEDIT, version 7.0.5. (HALL 1999). The alignments were performed using the CLUSTAL W programme (THOMPSON et al. 1994) implemented in BIOEDIT. The ends of all sequences were trimmed to obtain four sets of equal length sequences: *COI*, *ITS2* and *COI*+*ITS2*. The lengths of the sequences after cutting were 558 and 461 bp for *COI*, 488 positions for *ITS2* and 1,014 positions for combined sequences of *COI*+*ITS2* (558 bp + 456 positions). The sequences were collapsed to haplotypes (*COI*) and to common sequences (*ITS2* and *COI*+*ITS2*) using the programme ALTER (Alignment Transformation EnviRonment) (GLEZ-PEÑA et al. 2010).

During analysis of the phylogenetic relationships, the sequences were analysed by the genetic distance Poland populations with the aim of restoring the validity of the taxon described by JACKIEWICZ (1959) to commemorate outstanding achievements in lymnaeid taxonomy of this malacologist who died this year.

Neighbour-Joining method (SAITOU & NEI 1987) implemented in MEGA7 (KUMAR et al. 2016) using the Kimura two-parameter model (K2P) for pairwise distance calculations (KIMURA 1980). Best-fit substitution models were calculated using algorithm implemented in MEGA 7 for every set of sequences independently: Tamura 3 parameter evolutionary model (TAMURA 1992) for COI alignments, Kimura 2-parameter model (KIMURA 1980) for ITS2 set and a HKY substitution model for combined data set of COI+ITS2 (HASEGAWA et al. 1985). For all analyses we assumed a gamma distributed rate variation among sites. Maximum Likelihood analyses were performed using MEGA7.

The ML trees were tested by bootstrap analysis with 1,000 replicates (FELSENSTEIN 1985). In the case of combined alignment *COI+ITS2* parallel Bayesian Interference was conducted using the programme MRBAYES 3.1.2 (RONQUIST & HUELSENBECK 2003). Four Monte Carlo Markov chains were run for 1 million generations, sampling every 100 generations (the first 250,000 trees were discarded as 'burn-in'). This yielded a 50% majority rule consensus tree. Finally, calculated during ML analysis bootstrap values were mapped on the 50% majority rule consensus Bayesian tree.

RESULTS

The COI sequences obtained from GenBank were attributed to 77 haplotypes (Appendix 1). They had to be trimmed so that they could be aligned for the construction of ML trees. The tree of 53 haplotypes (558 bp long, COI 1 - COI 53) is shown in Fig. 1. The haplotypes clustered in nine clades, namely Ladislavella occulta, L. terebra, L. liogyra, L. exilis, L. elodes/tumrokensis, Stagnicola palustris (1), S. corvus, S. palustris (2) and Lymnaea stagnalis. The K2P genetic distances within these clades were very small, within a range of 0.0 - 2.0% (mean values) except for S. palustris (1) and (2) (when they were treated as one taxon, 4.1%) and L. stagnalis (4.4%) (Table 1). The K2P distances between clades were usually larger than 10% when they were compared in pairs (Table 1) with some exceptions, like L. tumrokensis vs. L. elodes which differed at the level of "within clade" distances (2.3%). Also, smaller distances separated pairs L. terebra vs. L. liogyra (6.9%), L. exilis vs. L.

tumrokensis (6.1%), *L. exilis* vs. *L. elodes* (6.3%) and *S. palustris* (2) vs. *S. corvus* (6.0%). Other K2P distances were larger, however these between clades representing the same genus were smaller (in the range 6.3–15.8% and 7.8% within *Ladislavella* and *Stagnicola*, respectively) than those between clades of different genera (*Ladislavella* vs. *Stagnicola* 18.3–22.0% and *Ladislavella* vs. *Lymnaea* 19.5–20.7%, however the K2P distances were 13.9–15.1% for *Stagnicola* vs. *Lymnaea*).

To compare the above haplotypes with eighty *COI* sequences for *Hinkleya caperata* and one for *L. elodes* deposited in GenBank by MORNINGSTAR et al. (2018) and DEWAARD et al. (2014), respectively (24 additional halotypes COI 54 – COI 77), they all had to be trimmed to 461 bp long haplotypes. The resulting ML tree (Fig. 2) showed similar clades as for longer haplotypes (Fig. 1) with one additional clade of haplotypes characteristic of *H. caperata*.

Fig. 1. Maximum Likelihood (ML) tree of the 558-bp-long fragment of *COI* sequences of the studied lymnaeid species with the use of *Lymnaea stagnalis* as outgroup (see Appendix 1). Numbers on branches represent bootstrap support above 50%

The *ITS2* sequences obtained from GenBank were attributed to 23 common sequences (Appendix 1). They clustered in seven clades on the ML tree (Fig. 3), three (*S. corvus, S. palustris* and *L. stagnalis*) clearly and four (*L. occulta, L. terebra, L. elodes* and *L. tum*-

rokensis) less separated. The smallest K2P distances (Table 1) differentiated specimens within particular species (mean values up to 1.6%), except *L. terebra* with its intraspecific variation larger (5.3%). The largest K2P distances were between species included

Table 1. Ranges of K2P genetic distances for COI and ITS2 sequences analysed (mean values in parentheses)

Comparison	COI (%)	ITS2 (%)
Within L. occulta	0.2-0.4 (0.3)	0.0
Within L. terebra	2.2	5.3
Within L. liogyra	0.0	
Within L. exilis	0.0	
Within L. tumrokensis	0.4	0
Within L. elodes	0.2-2.8 (1.4)	0.8
Within S. palustris	0.2–11.9 (4.1)	0.2–1.4 (0.9)
Within S. palustris (1)	0.2–1.1 (0.6)	
Within S. palustris (2)	0.2-1.5 (0.9)	
Within S. corvus	0.2-4.1 (2.0)	1.2-2.4 (1.6)
Within L. stagnalis	0.7-10.4 (4.4)	0.5-2.3 (1.2)
Between L. occulta and L. terebra	12.2-12.8 (12.6)	2.4-6.4 (4.4)
Between L. occulta and L. liogyra	10.0-10.2 (10.2)	
Between L. occulta and L. exilis	15.0-15.5 (15.3)	
Between L. occulta and L. tumrokensis	15.0–15.5 (15.3)	6.8
Between L. occulta and L. elodes	14.5–16.9 (15.8)	6.8–7.1 (7.0)
Between L. occulta and S. palustris	19.7–21.4 (20.5)	29.8-32.1 (31.0)
Between L. occulta and S. corvus	18.5–20.9 (19.6)	31.0-31.8 (31.5)
Between L. occulta and L. stagnalis	18.5–21.4 (19.9)	34.0-34.4 (34.1)
Between L. terebra and L. liogyra	6.9	
Between L. terebra and L. exilis	12.3–13.4 (12.9)	
Between L. terebra and L. tumrokensis	13.7–15.1 (14.4)	6.2-10.3 (8.3)
Between L. terebra and L. elodes	13.5–16.1 (15.1)	6.2–10.3 (8.1)
Between L. terebra and S. palustris	20.6–22.8 (21.6)	32.0–38.6 (35.4)
Between L. terebra and S. corvus	19.9–21.3 (20.5)	32.2–39.0 (35.5)
Between L. terebra and L. stagnalis	18.7–22.6 (20.6)	35.5-40.7 (37.9)
Between L. liogyra and L. exilis	11.9	
Between L. liogyra and L. tumrokensis	12.1	
Between L. liogyra and L. elodes	12.3–13.0 (12.7)	
Between L. liogyra and S. palustris	20.6–21.8 (21.1)	
Between L. liogyra and S. corvus	20.4–22.1 (20.8)	
Between L. liogyra and L. stagnalis	18.5–21.6 (20.0)	
Between L. exilis and L. tumrokensis	6.1	
Between L. exilis and L. elodes	5.5-6.7 (6.3)	
Between L. exilis and S. palustris	18.9–19.7 (19.4)	
Between L. exilis and S. corvus	18.0–19.0 (18.3)	
Between L. exilis and L. stagnalis	17.5–21.6 (19.5)	
Between L. tumrokensis and L. elodes	1.8–2.8 (2.3)	0.5–0.8 (0.6)
Between L. tumrokensis and S. palustris	21.2–22.4 (21.8)	32.5–34.9 (34.0)
Between L. tumrokensis and S. corvus	20.7–21.4 (21.1)	34.9–36.6 (35.8)
Between L. tumrokensis and L. stagnalis	19.9–22.4 (20.8)	36.7–38.1 (37.1)
Between L. elodes and S. palustris	20.2–23.5 (22.0)	32.2–34.6 (33.7)
Between L. elodes and S. corvus	19.9–22.7 (21.2)	34.6–36.3 (35.5)
Between L. elodes and L. stagnalis	19.0–23.1 (20.7)	35.6–38.1 (36.5)
Between S. palustris and S. corvus	5.1–11.6 (7.8)	5.0-6.5 (5.9)
Between S. palustris and L. stagnalis	11.8–17.4 (13.9)	9.5–12.3 (10.8)
Between S. corvus and L. stagnalis	14.0–17.1 (15.1)	12.2–13.8 (13.1)

Fig. 2. Maximum Likelihood (ML) tree of the 461-bp-long fragment of *COI* sequences of the studied lymnaeid species with the use of *L. stagnalis* as outgroup (see Appendix 1). Shortening the length of the sequences within alingment allowed to add sequences of *Hinkleya caperata* to the phylogenetic analysis. Numbers on branches indicate bootstrap support above 50%

Fig. 3. Maximum Likelihood (ML) tree of the 488-position-long fragment of *ITS2* sequences of the studied lymnaeid species with the use of *L. stagnalis* as outgroup (see Appendix 1). Numbers on branches indicate bootstrap support above 50%

Table 2. Number of differences in ITS2 nucleotide sequences between analysed species of genus Ladislavella

		Number of	nucleotide seque	ence differences
	Total	Subst	titutions	Insortions deletions
	IOtal	Transitions	Transversions	
L. occulta (ITS2 1 & 2) vs. L. terebra (ITS2 3 & 4)	43–59	2-11	7–13	19–50
L. occulta (ITS2 1 & 2) vs. L. elodes (ITS2 5 & 6)	80-86	11-12	12–13	56-61
L. occulta (ITS2 1 & 2) vs. L. tumrokensis (ITS2 7 & 8)	87-89	11	13-14	62–64
L. terebra (ITS2 3 & 4) vs. L. elodes (ITS2 5 & 6)	62–89	13–20	9-17	28-66
L. terebra (ITS2 3 & 4) vs. L. tumrokensis (ITS2 7 & 8)	68–91	12-19	10-19	30–69
L. elodes (ITS2 5 & 6) vs. L. tumrokensis (ITS2 7 & 8)	4–10	0–2	1–2	2–7

Table 3. Combined sequences of COI and ITS2 fragments for Bayesian analysis

Species	Combined sequences	COI	ITS2
Ladislavella occulta	CS 1	KP070796	KP070772
Ladislavella terebra	CS 2	LT623591	HE613324
	CS 3	LT623592	HE613325
Ladislavella tumrokensis	CS 4	KP830102	KP830108
	CS 5	KP830103	KP830109
Stagnicola corvus	CS 6	KP070781	KP070771
Stagnicola palustris	CS 7	KP070773	KP070769
Lymnaea stagnalis	CS 8	FR797867	FR797836
	CS 9	HG932251	HG931958
	CS 10	HG932247	HG931952
	CS 11	HG932255	HG931965

Fig. 4. Majority-rule consensus tree obtained from Bayesian Inference analysis (BI) of the combined data set of *COI* and *ITS2* DNA sequences (see Table 3) of the studied lymnaeid species. The tree was rooted with *L. stagnalis* combined sequences. Posterior probabilities (left) and bootstrap support above 50% from ML analysis (right) are marked on branches

in *Stagnicola* and *Lymnaea* clades and those grouped in four *Ladislavella* clades analysed in pairs (mean values 31.0–37.9%). Mean values of the K2P distance within *Ladislavella* species support their separation (*L. occulta* vs. *L. terebra* 4.4%, *L. occulta* vs. *L. tumrokensis* 6.8%, *L. occulta* vs. *L. elodes* 7.0%, *L. terebra* vs. *L. tumrokensis* 8.3%, *L. terebra* vs. *L. elodes* 8.1%), except a pair *L. tumrokensis* and *L. elodes* (mean K2P distance 0.6%). It is noteworthy that the number of differences between *ITS2* sequences of *L. occulta* and *L. terebra* is smaller than those distinguishing *L. occulta* from *L. elodes* and *L. tumrokensis* as well as *L. terebra*

DISCUSSION

((@

No differences were found in the structure of the shell and reproductive system between topotypical material of *Galba occulta* Jackiewicz and Siberian *Limnaea palustris* var. *terebra* Westerlund in careful comparative studies (VINARSKI 2003, 2012, VINARSKI & GLÖER 2008). Moreover, specimens of both species were closely related based on their *ITS2* sequences in *rDNA* gene (VINARSKI et al. 2016a). Therefore VINARSKI & GLÖER (2008) synonymised the taxa giving a priority to the older name. Somewhat later VINARSKI (2012) assigned it to the genus *Ladislavella* B. Dybowski, 1913 as *L. terebra* (Westerlund, 1885).

We found that the specimens from the Polish population in Gorzykowo near Gniezno (W. Poland)

from *L. elodes* and *L. tumrokensis* (Table 2). However it is much larger than the number differences in *ITS2* sequences between *L. elodes* and *L. tumrokensis* (Table 2) and much smaller than between *L. occulta* or *L. terebra* and species of *Stagnicola* or *Lymnaea* (data not shown).

Ten *ITS2* sequences deposited in GenBank for lymnaeids made it possible to create combined sequences *COI* + *ITS2* (Table 3). The Bayesian inference tree resulted in six well separated clades *L. occulta*, *L. terebra*, *L. tumrokensis*, *S. palustris*, *S. corvus* and *L. stagnalis* (Fig. 4).

differed in their nucleotide sequences of *COI* and *ITS2* fragments from the two Siberian populations (Tjumen Region and Altai Republic, Russia) (Figs 1–4). The K2P distances between the common sequences of *ITS2* fragment suggest that these populations are closely related (as suggested by VINARSKI et al. 2016a). However the differences of *ITS2* sequences between the Altai and Tjumen populations require further in-depth research on a larger number of populations. On the other hand, K2P distances between the haplotypes COI 1 – COI 4 and COI 5 & COI 6, representing these two groups (Polish and Siberian), respectively, are much higher (12.2–12.8%) than the 3% threshold established by HEBERT et al. (2003a,

b) for species delimitation. We are aware of the objections to the use of Hebert's threshold (DAVISON et al. 2009, SAUER & HAUSDORF 2012 and references cited therein). Moreover we have always stressed (PIEŃKOWSKA et al. 2015b, 2018a, b) that molecular features alone are not enough for species designation and that they have to be supported by anatomical features. However, the Polish and Siberian populations are far away from each other and one can expect a process of speciation that has a faster expression in the features of the rapidly evolving mitochondrial genome (THOMAZ et al. 1996, REMIGIO & HEBERT 2003) than, for example, in the features of shell and genitalia. Therefore we propose to retain the species name introduced by JACKIEWICZ (1959), i.e. L. occulta, for the Polish lineage of the taxon, especially when the other valid species of the genus Ladislavella differ to a lesser extent in the nucleotide sequence of the *COI* gene than *L*. *occulta* and *L*. *terebra* (see Table 1).

L. occulta or L. terebra were identified on the basis of shell and genital system features from several localities from Europe (West Poland, South Sweden, Czech Republic, Bosnia-Hercegovina, Ukraine) and Siberia (Yeniseysk and Selenga River near Baikal lake) by JACKIEWICZ (1992, 1993, 1997, 1998a, b) (who used the name Lymnaea (Stagnicola) occulta); several localities in Germany and Rusia (especially in Siberia and Far East) were added to its distribution by VINARSKI & GLÖER (2008) and recently from Ukraine (Khust district) by ANISTRATENKO et al. (2018) (using the name Ladislavella terebra). However L. occulta or L. terebra at these localities were identified on the basis of shell and genital system features. We report differences in COI and ITS2 sequences between one Polish (Gorzykowo, W. Poland) and two Russian (Siberia) localities. Further molecular research on L. occulta and L. terebra populations from other localities is necessary. Unfortunately all but one (Gorzykowo) Polish localities found by Jackiewicz and her co-workers (JACKIEWICZ 1959, 1993, 1998a, 2000) were destroyed, so the Polish *L. occulta* lineage is threatened with extinction (RYBSKA et al. 2007).

REFERENCES

- AKSENOVA O. V., BOLOTOV I. N., GOFAROV M. YU., KONDAKOV A. V., VINARSKI M. V., BESPALAYA Y. V., KOLOSOVA Y. S., PALATOV D. M., SOKOLOVA S. E., SPITSYN V. M., TOMILOVA A. A., TRAVINA O. V., VIKHREV I. V. 2018. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Scientific Reports 8: 11199. https://doi.org/10.1038/s41598-018-29451-1
- ANDREYEVA S. I., ANDREYEV N. I., VINARSKI M. V. 2010. Opriedielitiel presnovodnykh briukhonogikh mollyuskov (Mollusca: Gastropoda) Zapadnoy Sibiri. V. 1.

Although this was not the aim of this study, we add a few remarks about lymnaeid taxa resulting from our analysis of the *COI* gene sequences:

- COI gene sequences well support the generic classification of the following taxa: Ladislavella B. Dybowski, 1913, Hinkleyia F. C. Baker, 1928, Stagnicola Jeffreys, 1830 and Lymnaea Lamarck, 1799.
- 2. The results of this paper support the suggestion that *L. tumrokensis* and *L. elodes* are conspecific (according to VINARSKI et al. 2017 they represent two subspecies of *Ladislavella catascopium*).
- 3. The status of *Stagnicola palustris* should be verified. We found that this species was represented by two different *COI* lineages. SCHNIEBS et al. (2016) pointed to the inconsistency of stagnicoline lymnaeid classification based on mitochondrial sequences vs. that resulting from the analysis of nuclear genes and reproductive system anatomy. Drawing conclusions on the basis of our results would be premature. Further research is needed on a larger number of *S. palustris* populations to determine if this difference in *COI* sequences is a result of interspecific hybridisation or speciation visible in the mitochondrial genome.
- 4. Although *Lymnaea stagnalis* is a well defined species, it is also greatly diversified in *COI* nucleotide sequences which suggests that further studies on its populations would be necessary.

ACKNOWLEDGEMENTS

The authors are deeply indebted to KATRIN SCHNIEBS (Senckenberg Natural History Collections Dresden, Germany) for providing unpublished data concerning some localities of lymnaeid populations and to Professor WOJCIECH NIEDBAŁA (Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań) for his useful comments on the manuscript.

Gastropoda: Pulmonata. No. 1. Siemiestva Acroloxidae i Lymnaeidae. GP Omskaya oblastnaya tipografia, Omsk.

- ANISTRATENKO V. V., VINARSKI M. V., ANISTRATENKO O. YU., FURYK YU. I., DEGTYARENKO E. V. 2018. New data on pond snails (Mollusca: Gastropoda: Lymnaeidae) inhabiting the Ukrainian Transcarpathian: diversity, distribution and ecology. Ecologica Montenegrina 18: 1–14.
- BARGUES M. D., HORÁK P., PATZNER R. A., POINTIER J. P., JACKIEWICZ M., MEIER-BROOK C., MAS-COMA S. 2003.

Insights into the relationships of Palearctic and Nearctic lymnaeids (Mollusca: Gastropoda) by rDNA ITS-2 sequencing and phylogeny of stagnicoline intermediate host species of *Fasciola hepatica*. Parasite 10: 243–255. https://doi.org/10.1051/parasite/2003103243

- BARGUES M. D., VIGO M., HORÁK P., DVORAK J., PATZNER R. A., POINTIER J. P., JACKIEWICZ M., MEIER-BROOK C., MAS-COMA S. 2001. European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infection, Genetics and Evolution 1: 85–107. https:// doi.org/10.1016/S1567-1348(01)00019-3
- CAMPBELL D. C., CLARK S. A., LYDEARD C. 2017. Phylogenetic analysis of the Lancinae (Gastropoda, Lymnaeidae) with a description of the U. S. federally endangered Banbury Springs lanx. ZooKeys 663: 107– 132. https://doi.org/10.3897/zookeys.663.11320
- DAVISON A., BLACKIE R. L., SCOTHERN G. P. 2009. DNA barcoding of stylommatophoran land snail: a test of existing sequences. Molecular Ecology Resources 9: 1092–1101. https://doi.org/10.1111/j.1755-0998.2009.02559.x
- DAYRAT B., CONRAD M., BALAYAN S., WHITE T. R., ALBRECHT C., GOLDING R., GOMES S. R., HARASEWYCH M. G., DE FRIAS MARTINS A. M. 2011. Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): new insights from increased taxon sampling. Molecular Phylogenetics and Evolution 59: 425– 437. https://doi.org/10.1016/j.ympev.2011.02.014
- DEWAARD J. R. 2017. Canadian National Parks Data Release. Sequences available online at GenBank https://www.ncbi.nlm.nih.gov/genbank/ (accessed 30 October 2018)
- DEWAARD J. R., TELFER A., YOUNG M. R. 2014. Barcoding Canada data release. Sequences available online at GenBank https://www.ncbi.nlm.nih.gov/genbank/ (accessed 21 October 2018)
- FALKNER G. 1995. Present-day knowledge on the systematics of the genus *Stagnicola* in Europe. In: GUERRA A., ROLAN E., ROCHA F. (eds). Abstracts 12th International Malacological Congress, Vigo, Spain 1995: 378–379.
- FALKNER G., BANK R., PROSCHWITZ T. VON 2001. Checklist of the non-marine molluscan species-group taxa of the states of Northern, Atlantic and Central Europe (CLECOM I). Heldia 4: 1–76.
- FELSENSTEIN J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- GLEZ-PEÑA D., GÓMEZ-BLANCO D., REBOIRO-JATO M., FDEZ-RIVEROLA F., POSADA D. 2010. ALTER: program-oriented format conversion of DNA and protein alignments. Nucleic Acids Research 38 (Web Server issue): W14–W18. https://doi.org/10.1093/nar/gkq321
- GLÖER P. 2002. Die Süßwassergastropoden Nord- und Mitteleuropas. Die Tierwelt Deutschlands 73. Conchbooks, Hackenheim.
- GLÖER P., MEIER-BROOK C. 2003. Süßwassermollusken. 13 Ed. Deutscher Jugendbund für Naturbeobachtung, Hamburg.
- GOLDSTEIN P. Z., DESALLE R. 2011. Integrating DNA barcode data and taxonomic practise: determination,

discovery, and description. BioEssays 33: 135–147. https://doi.org/10.1002/bies.201000036

- GORDY M. A., KISH L., TARRABAIN M., HANINGTON P. C. 2016. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitology Research 115: 3867–3880. https://doi. org/10.1007/s00436-016-5152-9
- GREGORY T. R. 2005. DNA barcoding does not compete with taxonomy. Nature 434: 1067–1068. https://doi. org/10.1038/4341067b
- HALL T. A. 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. http://brownlab.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf
- HASEGAWA M., KISHINO H., YANO T. 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174. https://doi.org/10.1007/BF02101694
- HEBERT P. D. N., CYWINSKA A., BALL S. L., DEWAARD J. R. 2003a. Biological identifications through DNA bardcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321. https://doi.org/10.1098/ rspb.2002.2218
- HEBERT P. D. N., RATNASINGHAM S., DEWAARD J. R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270 (Suppl. 1): 596–599. https://doi.org/10.1098/rsbl.2003.0025
- IBOL DATA RELEASE 2011. International Barcode of Life (iBOL). Sequences available online at GenBank https:// www.ncbi.nlm.nih.gov/genbank/ (accessed 21 October 2018).
- JACKIEWICZ M. 1959. Badania nad zmiennością i stanowiskiem systematycznym Galba palustris O. F. Müll. Prace Komisji Biologicznej PTPN 19: 89–187.
- JACKIEWICZ M. 1992. Lymnaea (Stagnicola) occulta (Jackiewicz, 1959) (Gastropoda: Pulmonata) in Sibirien. Mitteilungen der Deutschen Malakozoologischen Gesellschaft 49: 13–16.
- JACKIEWICZ M. 1993. Phylogeny and relationships within the European species of the family Lymnaeidae (Gastropoda: Pulmonata: Basommatophora). Folia Malacologica 5: 61–95. https://doi.org/10.12657/folmal.005.003
- JACKIEWICZ M. 1997. New European locality of Lymnaea (Stagnicola) occulta (Jackiewicz, 1959) (Gastropoda, Pulmonata, Basommatophora). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden 18: 255–259.
- JACKIEWICZ M. 1998a. European species of the family Lymnaeidae (Gastropoda, Basommatophora: Pulmonata). Genus 9: 1–93.
- JACKIEWICZ M. 1998b. *Lymnaea* (*Stagnicola*) occulta (Jackiewicz, 1959) in the Selenga River delta at the Baikal Lake (Siberia) (Gastropoda, Basommatophora, Lymnaeidae). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden 19: 53–57.
- JACKIEWICZ M. 2000. Błotniarki Europy (Gastropoda: Pulmonata: Lymnaeidae). Wydawnictwo Kontekst, Poznań.

- KIMURA M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/ BF01731581
- KUMAR S., STECHER G., TAMURA K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/ msw054
- MEIER-BROOK C., BARGUES M. D. 2002. Catascopia, a new genus for three nearctic and one palearctic Stagnicola species (Gastropoda, Lymnaeidae). Folia Malacologica 10: 83–84. https://doi.org/10.12657/folmal.010.008
- MORNINGSTAR C. R., INOUE K., LANG B. K., BERG D. J. 2018. A comprehensive status, phylogenetic, and anatomical review of *Stagnicola caperata* (Say, 1829) in the south-west United States. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 527–534. https://doi.org/10.1002/aqc.2859
- NOVOBILSKY A., KAŠNY M., BERAN L., RONDELAUD D., HOGLUND J. 2013. Lymnaea palustris and Lymnaea fuscus are potential but uncommon intermediate hosts of Fasciola hepatica in Sweden. Parasites & Vectors 6: 251 (1–10). https://doi.org/10.1186/1756-3305-6-251
- PACKER L., GRIXTI J. C., ROUGHLEY R. E., HANNER R. 2009. The status of taxonomy in Canada and the impact of DNA barcoding. Canadian Journal of Zoology 87: 1097–1110. https://doi.org/10.1139/Z09-100
- PIECHOCKI A., WAWRZYNIAK-WYDROWSKA B. 2016. Guide to freshwater and marine Mollusca of Poland. Bogucki Wydawnictwo Naukowe, Poznań.
- PIEŃKOWSKA J. R., GIUSTI F., MANGANELLI G., LESICKI A. 2015b. Monacha claustralis (Rossmässler 1834) new to Polish and Czech malacofauna (Gastropoda: Pulmonata: Hygromiidae). Journal of Conchology 42: 79–93. http://docplayer.net/56112556-Monacha-claustralis-rossmassler-1834-new-to-polish-and-czech-malacofauna-gastropoda-pulmonata-hygromiidae.html
- PIEŃKOWSKA J. R., KOSICKA E., WOJTKOWSKA M., KMITA H., LESICKI A. 2014. Molecular identification of first putative aquaporins in snails. Journal of Membrane Biology 247: 239–252. https://doi.org/10.1007/ s00232-014-9629-0
- PIEŃKOWSKA J. R., MANGANELLI G., GIUSTI F., HALLGASS A., LESICKI A. 2018a. Exploring Monacha cantiana (Montagu, 1803) phylogeography: cryptic lineages and new insights into the origin of the English populations (Eupulmonata, Stylommatophora, Hygromiidae). ZooKyes 765: 1–41. https://doi.org/10.3897/zookeys.765.24386
- PIEŃKOWSKA J. R., MANGANELLI G., GIUSTI F., ROBATO D., HALLGASS A., LESICKI A. 2018b. Exploration of phylogeography of *Monacha cantiana* s. l. continues: the populations of the Apuan Alps (NW Tuscany, Italy) (Eupulmonata, Stylommatophora, Hygromiidae). ZooKeys (accepted)
- PIEŃKOWSKA J. R., RYBSKA E., BANASIAK J., WESOŁOWSKA M., LESICKI A. 2015a. Taxonomic status of Stagnicola palustris (O. F. Müller, 1774) and S. turricula (Held, 1836) (Gastropoda: Pulmonata: Lymnaeidae) in view of new

molecular and chorological data. Folia Malacologica 23: 3–18. https://doi.org/10.12657/folmal.023.003

- REMIGIO E. A., HEBERT P. D. N. 2003. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution 29: 641–647. https://doi.org/10.1016/ S1055-7903(03)00140-4
- RONQUIST F., HUELSENBECK J. P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi. org/10.1093/bioinformatics/btg180
- RYBSKA E., KSIĄŻKIEWICZ Z., GŁAZACZOW A., ORWIN D., BAJACZYK R., LESICKI A. 2007. The rare lymnaeid species *Stagnicola occulta* (Pulmonata: Lymnaeidae) is disappearing from the waters of the Wielkopolska region (W. Poland). The Freshwater Biological Association Annual Scientific Meeting, Windermere 5–6 September 2007, Book of Abstracts: 14.
- SAITOU N., NEI M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425. https:// doi.org/10.1093/oxfordjournals.molbev.a040454
- SAUER J., HAUSDORF B. 2012. A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28: 300–316. https://doi.org/10.1111/j.1096-0031.2011.00382.x
- SCHNIEBS K. 2016. Beiträge zur Systematik und Taxonomie paläarktischer Schlammschnecken (Gastropoda, Basommatophora, Lymnaeidae) anhand molekulargenetischer und morphologischer Merkmale. Ph. D. Thesis, Fakultät Umweltwissenschaften, Technische Universität Dresden.
- SCHNIEBS K., GEORGIEV D., GLÖER P., HUNDSDOERFER A. K. 2015. A molecular genetic evidence of the occurrence of the freshwater snail *Radix lagotis* (Schrank, 1803) (Gastropoda: Lymnaeidae) in Bulgaria. Ecologica Montenegrina 3: 29–39.
- SCHNIEBS K., GLÖER P., GEORGIEV D., HUNDSDOERFER A. K. 2012. First record of Stagnicola montenegrinus Glöer & Pešić, 2009 (Mollusca: Gastropoda: Lymnaeidae) in Bulgaria and its taxonomic relationship to other European lymnaeids based on molecular analysis. North-Western Journal of Zoology 8: 164–171.
- SCHNIEBS K., GLÖER P., QUIÑONERO-SALGADO S., LOPEZ-SORIANO J., HUNDSDOERFER A. K. 2018. First record of freshwater snail *Galba cubensis* (L. Pfeiffer, 1839) (Mollusca, Gastropoda, Lymnaeidae) from Europe in the open fields. Folia Malacologica 26: 3–15. https:// doi.org/10.12657/folmal.026.002
- SCHNIEBS K., GLÖER P., VINARSKI M. V., HUNDSDOERFER A. K. 2011. Intraspecific morphological and genetic variability in *Radix balthica* (Linnaeus 1758) (Gastropoda: Basommatophora: Lymnaeidae) with morphological comparison to other European *Radix* species. Journal of Conchology 40: 657–678.
- SCHNIEBS K., GLÖER P., VINARSKI M. V., HUNDSDOERFER A. K. 2016. A barcode pitfall in Palaearctic Stagnicola specimens (Mollusca: Lymnaeidae): incongruence of mitochondrial genes, a nuclear marker and morphology. North-Western Journal of Zoology 12: 239–254.

http://biozoojournals.ro/nwjz/content/v12n2/nwjz_ e151314_Schniebs.pdf

(((0

- SCHNIEBS K., GLÖER P., VINARSKI M., QUIÑONERO-SALGADO S., LOPEZ-SORIANO J., HUNDSDOERFER A. K. 2017. A new alien species in Europe: first record of Austropeplea viridis (Quoy & Gaimard, 1833) (Mollusca, Gastropoda, Lymnaeidea) in Spain. Journal of Conchology 42: 357– 370.
- TAMURA K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9: 678–687.
- TAUTZ D., ARCTANDER P., MINELLI A., THOMAS R. H., VOGLER A. P. 2003. A plea for DNA taxonomy. Trends in Ecology & Evolution 18: 70–74. https://doi. org/10.1016/S0169-5347(02)00041-1
- THOMAZ D., GUILLER A., CLARKE B. 1996. Extreme divergence of mitochondrial DNA within species of pulmonate land snails. Proceedings of Royal Society B: Biological Sciences 263: 363–368. https://doi.org/10.1098/rspb.1996.0056
- THOMPSON J. D., HIGGINS D. G., GIBSON T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673
- VINARSKI M. V. 2003. The systematic position of Lymnaea vulnerata (Küster, 1862) and L. occulta (Jackiewicz, 1959) (Mollusca: Gastropoda: Lymnaeidae). Zoosystematica Rossica 12: 23–27.
- VINARSKI M. V. 2012. The lymnaeid genus *Catascopia* Meier-Brook et Bargues, 2002 (Mollusca: Gastropoda: Lymnaeidae), its synonymy and species composition. Invertebrate Zoology 9: 91–104. https://doi. org/10.15298/invertzool.09.2.02
- VINARSKI M. V., AKSENOVA O. V., BESPALAYA Y. V., BOLOTOV I. N., GOFAROV M. Y., KONDAKOV A. V. 2016b. *Ladislavella tumrokensis*: the first molecular evidence of a Nearctic clade of lymnaeid snails inhabiting Eurasia. Systematics and Biodiversity 14: 276–287. https://doi. org/10.1080/14772000.2016.1140244

- VINARSKI M. V., BOLOTOV I. N., SCHNIEBS K., NEKHAEV I. O., HUNDSDOERFER A. K. 2017. Endemics or strangers? The integrative re-appraisal of taxonomy and phylogeny of the Greenland Lymnaeidae (Mollusca: Gastropoda). Comptes Rendus Biologies 340: 541–557. https://doi. org/10.1016/j.crvi.2017.09.005
- VINARSKI M. V., GLÖER P. 2008. Taxonomic notes on Euro-Siberian freshwater molluscs. 3. *Galba occulta* Jackiewicz, 1959 is a junior synonym of *Limnaea palustris* var. *terebra* Westerlund, 1885. Mollusca 26: 175–185.
- VINARSKI M. V., SCHNIEBS K., GLÖER P., HUNDSDOERFER A. K. 2011. The taxonomic status and phylogenetic relationships of the genus *Aenigmomphiscola* Kruglov and Starobogatov, 1981 (Gastropoda: Pulmonata: Lymnaeidae). Journal of Natural History 45: 2049– 2068. https://doi.org/10.1080/00222933.2011.574800
- VINARSKI M. V., SCHNIEBS K., GLÖER P., NEKHAEV I. O., HUNDSDOERFER A. K. 2014. Geography rather than morphology explains the genetic diversity within the *Lymnaea stagnalis* s. l. complex (Mollusca, Gastropoda, Pulmonata) in Eurasia. Sequences available online at GenBank https://www.ncbi.nlm.nih.gov/genbank/ (Accessed 21 October 2018)
- VINARSKI M. V., SCHNIEBS K., GLÖER P., SON M. O., HUNDSDOERFER A. K. 2016a. The steppe relics: taxonomic study on two lymnaeid species endemic to the former USSR. Archiv für Molluskenkunde 141: 67–85. https:// doi.org/10.1127/arch.moll/1869-0963/141/067-085
- WALTER H. J. 1969. Illustrated biomorphology of the "angulata" lake form of the basommatophoran snail *Lymnaea catascopium* Say. Malacological Review 2: 1–102.
- WESTERLUND C. A. 1885. Fauna der in der Paläarktischen Region lebenden Binenconchylien. Fam. Succineidae, Auriculidae, Limnaeidae, Cyclostomidae und Hydrocenidae. Olsson, Lund.
- Received: November 20th, 2017 Revised: November 28th , 2018 Accepted: November 29th, 2018
- Published on-line: December 11th, 2018

-	-
×	
Ē	
<u>и</u>	1
дd	-
<	4

	U.
	۵.
	5
	ð
÷	Ξ
	2
	G
	5
	ž
	5
	ã
	B
	H
•	5
	S.
	S
	e,
7	믑
	b
	S
	Ĕ.
	≥
	Ś
	le
•	Ħ
ſ	à
	8
-	1
	n
	2
	ta
	1a
	2
7	H
•	5
	~
•	31
	3
-	a
	Ц
	0
	ð
	+
	2
	Ĕ
	ect
	electo
-	selecto
-	ts select
-	ents selected
	nents selecto
	gments selecto
-	agments selecto
	tragments select
	le tragments select
	ene tragments select
	gene tragments select
	Z gene tragments select
	VSZ gene tragments select
	ITSZ gene tragments select
	id ITSZ gene tragments select
	and <i>ITS2</i> gene tragments select
	I and ITSZ gene tragments select
	UI and II S2 gene tragments select
, , , , , , , , , , , , , , , , , , ,	COI and ITSZ gene tragments select
	of CUI and ITSZ gene tragments select
	s of COI and ITSZ gene tragments select
	ies of COI and ITSZ gene tragments select
	nces of CUI and ITSZ gene tragments select
	ences of <i>CUI</i> and <i>II</i> SZ gene tragments select
	juences of <i>COI</i> and <i>ITSZ</i> gene tragments select
	equences of CUI and ITSZ gene tragments select
	sequences of COI and ITSZ gene tragments select
	nk sequences of COI and ITS2 gene tragments select
	ank sequences of CUI and ITS2 gene tragments select
	Bank sequences of CUI and ITS2 gene tragments select
	enbank sequences of COI and ITSZ gene tragments select

	Locality		Crocico	-	COI	LI	rS2	Dofessores for ConDonly
CIV	Constant socions diffe	Consuming consulting too	operics	haplo-	##	common	##	Neteretices for Generation
NO	Country, region, suc	Geographiic coordinates		type	GenBank	sequence	GenBank	chereodan
Ξ.	Poland: Gorzykowo, near Września-	52°24'50.0"N 17°43'13.6"E	Ladislavella occulta	COI 1	KP070796	ITS2 1	KP070772	PIEŃKOWSKA et al. 2015a
	Gniezno			COI 2	KP070797			
				COI 3	KP070798			
				COI 4	KP070799			
						ITS2 2	AJ457042	BARGUES et al. 2003
5.	Russia: Siberia, Tjumen Region, vicinity	66°38'54.1"N 66°25'25.3"E	Ladislavella terebra	COI 5	LT623591			SCHNIEBS et al. 2018
	of Labytnangi					ITS2 4	HE613322	VINARSKI et al. 2016a
							HE613323 HE613324	
3.	Russia: Siberia, Altai Republic, Lake	51°47'29.5"N 87°16'56.1"E	Ladislavella terebra	COI 6	LT623592	ITS2 3	HE613325	SCHNIEBS et al. 2018
	Teletzkoje						HE613326	
4.	Russia: Kamchatka, Tumrok, Verkhne-	55°12'02"N 160°23'10"E	Ladislavella tumrokensis	COI 7	KP830103	ITS2 7	KP830109	VINARSKI et al. 2016b
	Scnapinskiye				KP830104		KP830110	
					KP830107			
				COI 8	KP830102		KP830108	
					KP830106		KP830112	
					KP830105	ITS2 8	KP830111	
5.	USA: Illinois, Jersey County, Ditch along the Stump Lake access road	39°01'25.7"N 90°33'29.8"W	Ladislavella exilis	COI 9	HM230364			CAMPBELL et al. 2017
6.	Russia: Primorsky Krai	unpublished	Ladislavella liogyra	COI 10	MH190007			AKSENOVA et al. 2018
7.	Canada: Alberta, Banff NP, Vermillion	51°10'40.8"N 115°36'21.6"W	Ladislavella elodes	COI 11	KM612124			DEWAARD et al. 2014
	Lakes /Bow River				KM612184			
∞.	Canada: Alberta, Banff NP, Cave and Basin Area	51°10'15.6"N 115°35'09.6"W	Ladislavella elodes	COI 13	KM612224 KM611916			DEWAARD et al. 2014
9.	Canada: British Columbia, Yoho NP,	51°26'34.8"N 116°32'31.2"W	Ladislavella elodes	COI 12	KM611837			DEWAARD et al. 2014
	Emerald Lake Trials				KM612105			
					KM612117			
					KM612123			
					KM612154			
					KM612215			
				COI 14	KM611972			
10.	Canada: Manitoba	58°45'18.0''N 93°54'54.0''W	Ladislavella elodes	COI 15	HQ926943			IBOL DATA RELEASE 2011
					HQ926945			

	Locality		Chocipo	0	IO	LI	-S2	Dofornnan for ConDank
No.	Country, region, site	Geographic coordinates	operes	haplo- type	## GenBank	common sequence	## GenBank	deposists
11.	Canada: Manitoba	58°45'32.4"N 93°57'07.2"W	Ladislavella elodes	COI 16	HQ926954 HQ926955			IBOL DATA RELEASE 2011
12.	Canada: Yukon Territory, Kluane National Park, Dezadeash River Trail	60°45'03.6"N 137°31'48.0"W	Ladislavella elodes	COI 16	MF544168			DEWAARD 2017
13.	Canada: Manitoba	58°39'47.2"N 94°09'58.3"W	Ladislavella elodes	COI 16 COI 17 COI 17 COI 18	HQ926942 HQ926930 HQ926934 HQ926939 HQ926939 HQ926929 HQ926921			IBOL DATA RELEASE 2011
				COI 21 COI 22	HQ926965 HQ926933			
14.	Canada: Alberta, Jasper NP, Range Road 275a, wetland	53°12'00.0''N 117°54'46.8''W	Ladislavella elodes	COI 19 COI 20	MF544604 MF544617 MF544232 MF544367			DEWAARD 2017
15.	Canada: Alberta, Lacombe County	52°16'12.0"N 113°34'48.0"W	Ladislavella elodes	COI 23	KT831386			GORDY et al. 2016
16.	Canada: Manitoba	58°43'47.6''N 93°46'49.8''W	Ladislavella elodes	COI 26	HQ926912 HQ969867			IBOL DATA RELEASE 2011
17.	Canada: Ontario, Bruce Peninsula National Park, Scugog Lake	45°07'11.6''N 81°31'55.6''W	Ladislavella elodes	COI 25 COI 26	MF545071 MF544921			DEWAARD 2017
18.	USA: California, Lassen County, Ash Creek at Ash Valley Rd, SE. of Adin	41°05'24.8"N 120°42'50.8"W	Ladislavella elodes			ITS2 5	LN851520	VINARSKI et al. 2017
19.	USA: Oregon, Malheur County, Crooked Spring at Crooked Spring Rest Area	42°47'57.9"N 117°44'46.6"W	Ladislavella elodes			ITS2 6	LN851519	VINARSKI et al. 2017
20.	Germany: Saxony, wetland west of Burghausen	51°21'33"N 12°14'44"E	Stagnicola palustris	COI 27	FR797869 FR797870			VINARSKI et al. 2011
21.	Germany: Baden-Württemberg, lake Bodensee, peninsula Mettnau, north side	47°43'52"N 09°00'04"E	Stagnicola palustris	COI 28	FR <i>7</i> 97871 FR <i>7</i> 97872			VINARSKI et al. 2011
						ITS2 15	HE577631	SCHNIEBS et al. 2012
22. 23.	Poland: lake Wilczyńskie, near Konin. Germany: Mecklenburg-Western Pomerania, lake Grosser Plaetschsee, south bank	52°29'03"N 18°07'24"E 53°26'25"N 12°19'18"E	Stagnicola palustris Stagnicola palustris	COI 28 COI 28	KP070774 LN515542			PIEŃKOWSKA et al. 2015a SCHNIEBS et al. 2016
24.	Poland: ponds at Morasko near Poznań	52°28'14"N 16°55'42"E	Stagnicola palustris	COI 29 COI 32	KP070777 KP070773			PIEŃKOWSKA et al. 2015a

LO

243

	Locality		Sneriec		COI	LI	'S2	References for GenBank
No.	Country, region, site	Geographic coordinates	operes	haplo- type	## GenBank	common sequence	## GenBank	deposists
25.	Russia: Tjumen Region, Yamal Peninsula, ox-bow of river Shchuchya*	67°23'N 67°36'E*	Stagnicola palustris	COI 29	HG932232 LN515547			VINARSKI et al. 2014
26.	Russia: Nenets Autonomous Okrug	unpublished	Stagnicola palustris	COI 29	MH189888			AKSENOVA et al. 2018
27.	France	unpublished	Stagnicola palustris	COI 30	HQ660032			DAYRAT et al. 2011
28.	Germany: Saxony, Dresden, small pond	51°00'22.5"N 13°42'24.5"E	Stagnicola palustris	COI 31	LN515546			SCHNIEBS et al. 2016
29.	Poland: lake Mrowinko, Santoczno near Gorzów Wlkp.	52°51'15"N 15°19'38"E	Stagnicola palustris	COI 33	KP070775		KP070769**	PIEŃKOWSKA et al. 2015a
30.	Poland: lake Wysokie Brodno	53°18'08.6"N 19°21'59.0"E	Stagnicola palustris	COI 34	KP070776			PIEŃKOWSKA et al. 2015a
31.	Germany: Saxony, Dresden, pond Zschoner Mühlteich	51°03'33"N 13°38'23"E	Stagnicola palustris	COI 35	LN515541			SCHNIEBS et al. 2016
32.	Germany: Mecklenburg-Western Pomerania, lake Koelpinsee	53°30'50.0"N 12°36'42.0"E	Stagnicola palustris	COI 36	LN515543			SCHNIEBS et al. 2016
33.	Germany: Saxony, old ox-bow of river Röder between Rödern and Oberrödern	51°14'01"N 13°42'02"E	Stagnicola palustris	COI 37 COI 38	LN515544 LN515545			SCHNIEBS et al. 2016
34.	Russia: Moscow City, a pond in Nekrasovka District	55°41'32.52"N 37°57'0.68"E	Stagnicola palustris	COI 39	LN515548 LN515549			SCHNIEBS et al. 2016
35.	Germany: Brandenburg, Lake Schulzensee near Chorin	52°54'19.38''N 13°52'14.71''E	Stagnicola palustris	COI 40	LT623589 LT623590	ITS2 12	LT623578	SCHNIEBS et al. 2016
36.	France: Normandie, Tatihou Island, Contentin	unpublished	Stagnicola palustris			ITS2 13	AJ319620	BARGUES et al. 2001
	Germany: Bavaria, Danube valley The Netherlands: Province Friesland,							
	Beetsterzwaag							
37.	Sweden: Norrköping	58°37'12.0"N 16°22'48.0"E	Stagnicola palustris			ITS2 14	KC248373	NOVOBILSKY et al. 2013
38.	Russia: Tjumen Region, Yamal Peninsula, ox-bow of river Shchuchya*	67°23'N 67°36'E*	Stagnicola palustris			ITS2 16	HG931946	VINARSKI et al. 2014
39.	Germany: Mecklenburg-Vorpommern, lake Grosser, Plaetschsee, south bank	53°26'25"N 12°19'18"E	Stagnicola palustris			ITS2 17	FR797838	VINARSKI et al. 2011
40.	Germany: Baden-Württemberg, lake Illmensee	47°51'43.07"N 9°22'40.60"E	Stagnicola corvus			ITS2 9	LN515551	SCHNIEBS et al. 2016
41.	Germany: Saxony, Niederspree, pond Großer Tiefzug*	51°24'20"N 14°53'38"E*	Stagnicola corvus	COI 41	HG932236	ITS2 10	HE577638	VINARSKI et al. 2014 SCHNIEBS et al. 2012
42.	Germany: Saxony, Grethen, ditch on the westside of the pond Kleiner Kirchenteich*	51°14'29''N 12°39'22''E*	Stagnicola corvus	COI 42	HG932237 HG932238			VINARSKI et al. 2014
43.	Germany, Mecklenburg-Western Pomerania, small pond near Neperstorf*	unpublished	Stagnicola corvus	COI 43	HG932239			VINARSKI et al. 2014

.

	Locality		Crocioc		COI	I	rs2	Doformond for ConDant
No.	Country, region, site	Geographic coordinates	opuno	haplo- type	## GenBank	common sequence	## GenBank	deposists
44.	Poland: Luboń, water bodies near railroad close to Kocie doły	52°19'53"N 16°53'22"E	Stagnicola corvus	COI 44	KP070781			PIEŃKOWSKA et al. 2015a
45.	Poland: stream Niwnica, around Nysa	50°26'50"N 17°23'43"E	Stagnicola corvus	COI 45 COI 46	KP070782 KP070783		KP070771**	PIEŃKOWSKA et al. 2015a
46.	Austria: Wallersee, near Salzburg	unpublished	Stagnicola corvus			ITS2 11	AJ319625	BARGUES et al. 2001
47.	Germany: Saxony, pond Vierteich near Freitelsdorf	51°15'43"N 13°41'57"E	Lymnaea stagnalis	COI 47	LN515538			SCHNIEBS et al. 2016
48.	Germany: Baden-Württemberg, Konstanz-Egg, ditch Hockgraben	47°40'57.3"N 9°11'34.2"E	Lymnaea stagnalis			ITS2 19	FR797834	VINARSKI et al. 2011
49.	Germany: Baden-Württemberg, lake Bodensee, peninsula Mettnau, north side,	47°43'52"N 09°00'04"E	Lymnaea stagnalis	COI 48	FR797867	ITS2 20	FR797836	VINARSKI et al. 2011
50.	Germany: Mecklenburg-Western Pomerania: Krümmel, Lake Tralowsee*	unpublished	Lymnaea stagnalis	COI 49	HG932247	ITS2 21	HG931952	VINARSKI et al. 2014
51.	France: vicinity of Toulouse*	unpublished	Lymnaea stagnalis	COI 50	HG932251	ITS2 23	HG931958	VINARSKI et al. 2014
52.	Bulgaria: Plovdiv, floodplain of the Mariza River*	unpublished	Lymnaea stagnalis	COI 51	HG932255	ITS2 18	HG931965	VINARSKI et al. 2014
53.	Germany: Saxony, Dresden-Zschieren, old branch of river Elbe	50°59'50"N 13°52'28"E	Lymnaea stagnalis			ITS2 22	HE573064	SCHNIEBS et al. 2011
54. 55.	Poland: Bystrzyca River, Spiczyn Poland: pond, Niemcza	51°20'29"N 22°44'51"E 50°43'30"N 16°49'32"E	Lymnaea stagnalis Lymnaea stagnalis	COI 52 COI 53	KP070784 KP070795			PIEŃKOWSKA et al. 2015a PIEŃKOWSKA et al. 2015a
56.	USA: Indiana, Posey County, floodplain of the Wabash River near New Harmony (NH)	unpublished	Hinkleya caperata	COI 54 COI 55 COI 56 COI 57 COI 57 COI 58 COI 60 COI 61 COI 61 COI 61	MF962171 MF962173 MF962173 MF962185 MF962185 MF962186 MF962174 MF962176 MF962177 MF962177 MF962178 MF962178 MF962183 MF962183 MF962183 MF962183			MORNINGSTAR et al. 2018

24	0										JOa	anna	аĸ.	. P16	enko	OWS	ĸa,	And	irze	j Le	esici	<u>K1</u>										(e
	kererences for Genbank deposists	MORNINGSTAR et al. 2018																MORNINGSTAR et al. 2018														
ITS2	non ## ence GenBank																															
COI	## comr GenBank seque	MF962187	MF962193	MF962197	MF962201	MF962188	MF962202	MF962189	MG962192	MF962200	MF962190	MF962191	MF962196	MF962198	MF962194	MF962199	MF962195	MF962203	MF962208	MF962209	MF962211	MF962215	MF962216	MF962204	MF962206	MF962207	MF962210	MF962212	MF962213	MF962214	MF962217	MF962205
	haplo- type	COI 63				COI 64		COI 65			COI 66				COI 67		COI 68	COI 69						COI 70								COI 71
	opecies	Hinkleya caperata																Hinkleya caperata														
	Geographic coordinates	unpublished																unpublished														
Locality	Country, region, site	USA: New Mexico, Chaves County,	Hunter Marsh on Bitter Lake National	Wildlite Retuge (BLHM)														USA: Texas, Pecos County, Diamond Y	Preserve (DY)													
	No.	57.																58.														

	Locality		Craciae	0	IO	IT	S2	Dafarancas for CanBank
No.	. Country, region, site	Geographic coordinates	opuno	haplo- type	## GenBank	common sequence	## GenBank	deposists
59.	USA: New Mexico, Sandoval County, vernal grassland pools in Valles Caldera	unpublished	Hinkleya caperata	COI 66	MF962223 MF962226			MORNINGSTAR et al. 2018
	National Preserve (VC)			COI 72	MF962218			
				[MF962219			
				[MF962220			
				_ ,	MF962221			
					MF962222 MF962222			
					MF962225			
					MF962227			
					MF962228			
				I	MF962229			
				Ι	MF962230			
				Ι	MF962231			
				Ι	MF962232			
				I	MF962233			
				I	MF962234			
				I	MF962235			
				I	MF962236			
60.	USA: New Mexico, Taos County, snow-	unpublished	Ladislavella elodes	COI 73	MF962156			MORNINGSTAR et al. 2018
	melt pools near Big Costilla Peak (BCP)				MF962158			
					MF962159			
					MF702100			
				_ ,	MF962161			
					MF962162			
				CUI /4	MF962157			
					MF962166			
				COI 75	MF962167			
				[MF962169			
				COI 76	MF962163			
				1	MF962164			
				I	MF962165			
				[MF962168			
				1	MF962170			
61.	Canada: British Columbia, Yoho NP, Emerald Lake Trials	51°26'34.8"N 116°32'31.2"W	Ladislavella elodes	COI 77	KM612042			DEWAARD et al. 2014
* Dat	ta published due to courtesy of KATRIN SCHNIEBS	s (Senckenberg Natural History Co	ollections Dresden, Ger	many).				

LO

** ITS2 sequences too short for ML tree presented on Fig. 3.